Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.172
Filtrar
1.
BMC Psychiatry ; 24(1): 324, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664669

RESUMEN

BACKGROUND: Methamphetamine (MA) abuse has resulted in a plethora of social issues. Sleep disturbance is a prominent issue about MA addiction, which serve as a risk factor for relapse, and the gut microbiota could play an important role in the pathophysiological mechanisms of sleep disturbances. Therefore, improving sleep quality can be beneficial for treating methamphetamine addiction, and interventions addressing the gut microbiota may represent a promising approach. METHOD: We recruited 70 MA users to investigate the associations between sleep quality and fecal microbiota by the Pittsburgh Sleep Quality Index (PSQI), which was divided into MA-GS (PSQI score < 7, MA users with good sleep quality, n = 49) and MA-BS group (PSQI score ≥ 7, MA users with bad sleep quality, n = 21). In addition, we compared the gut microbiota between the MA-GS and healthy control (HC, n = 38) groups. 16S rRNA sequencing was applied to identify the gut bacteria. RESULT: The study revealed that the relative abundances of the Thermoanaerobacterales at the order level differed between the MA-GS and MA-BS groups. Additionally, a positive correlation was found between the relative abundance of the genus Sutterella and daytime dysfunction. Furthermore, comparisons between MA users and HCs revealed differences in beta diversity and relative abundances of various bacterial taxa. CONCLUSION: In conclusion, the study investigated alterations in the gut microbiota among MA users. Furthermore, we demonstrated that the genus Sutterella changes may be associated with daytime dysfunction, suggesting that the genus Sutterella may be a biomarker for bad sleep quality in MA users.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Heces , Microbioma Gastrointestinal , Metanfetamina , Calidad del Sueño , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Metanfetamina/efectos adversos , Masculino , Adulto , Heces/microbiología , Femenino , ARN Ribosómico 16S/genética , Adulto Joven , Trastornos del Sueño-Vigilia/microbiología
2.
Sci Rep ; 14(1): 9425, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658618

RESUMEN

Liver fibrosis, as a consequence of chronic liver disease, involves the activation of hepatic stellate cell (HSC) caused by various chronic liver injuries. Emerging evidence suggests that activation of HSC during an inflammatory state can lead to abnormal accumulation of extracellular matrix (ECM). Investigating novel strategies to inhibit HSC activation and proliferation holds significant importance for the treatment of liver fibrosis. As a member of the doublecortin domain-containing family, doublecortin domain containing 2 (DCDC2) mutations can lead to neonatal sclerosing cholangitis, but its involvement in liver fibrosis remains unclear. Therefore, this study aims to elucidate the role of DCDC2 in liver fibrosis. Our findings revealed a reduction in DCDC2 expression in both human fibrotic liver tissues and carbon tetrachloride (CCl4)-induced mouse liver fibrotic tissues. Furthermore, exposure to transforming growth factor beta-1(TGF-ß1) stimulation resulted in a dose- and time-dependent decrease in DCDC2 expression. The overexpression of DCDC2 inhibited the expression of α-smooth muscle actin (α-SMA) and type I collagen alpha 1 (Col1α1), and reduced the activation of HSC stimulated with TGF-ß1. Additionally, we provided evidence that the Wnt/ß-catenin signaling pathway was involved in this process, wherein DCDC2 was observed to inhibit ß-catenin activation, thereby preventing its nuclear translocation. Furthermore, our findings demonstrated that DCDC2 could attenuate the proliferation and epithelial-mesenchymal transition (EMT)-like processes of HSC. In vivo, exogenous DCDC2 could ameliorate CCl4-induced liver fibrosis. In summary, DCDC2 was remarkably downregulated in liver fibrotic tissues of both humans and mice, as well as in TGF-ß1-activated HSC. DCDC2 inhibited the activation of HSC induced by TGF-ß1 in vitro and fibrogenic changes in vivo, suggesting that it is a promising therapeutic target for liver fibrosis and warrants further investigation in clinical practice.


Asunto(s)
Tetracloruro de Carbono , Células Estrelladas Hepáticas , Cirrosis Hepática , Vía de Señalización Wnt , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Cirrosis Hepática/tratamiento farmacológico , Humanos , Ratones , Masculino , beta Catenina/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proliferación Celular , Ratones Endogámicos C57BL
3.
ISME Commun ; 4(1): ycae044, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38650709

RESUMEN

Perturbations and modulations during early life are vital to affect gut microbiome assembly and establishment. In this study, we assessed how microbial communities shifted during calf diarrhea and with probiotic yeast supplementation (Saccharomyces cerevisiae var. boulardii, SCB) and determined the key bacterial taxa contributing to the microbial assembly shifts using a total of 393 fecal samples collected from 84 preweaned calves during an 8-week trial. Our results revealed that the microbial assembly patterns differed between healthy and diarrheic calves at 6- and 8-week of the trial, with healthy calves being stochastic-driven and diarrheic calves being deterministic-driven. The two-state Markov model revealed that SCB supplementation had a higher possibility to shift microbial assembly from deterministic- to stochastic-driven in diarrheic calves. Furthermore, a total of 23 and 21 genera were specific ecotypes to assembly patterns in SCB-responsive (SCB-fed calves did not exhibit diarrhea) and nonresponsive (SCB-fed calves occurred diarrhea) calves, respectively. Among these ecotypes, the area under a receiver operating characteristic curve revealed that Blautia and Ruminococcaceae UCG 014, two unidentified genera from the Ruminococcaceae family, had the highest predictiveness for microbial assembly patterns in SCB-responsive calves, while Prevotellaceae, Blautia, and Escherichia-Shigella were the most predictive bacterial taxa for microbial assembly patterns in SCB-nonresponsive calves. Our study suggests that microbiome perturbations and probiotic yeast supplementation serving as deterministic factors influenced assembly patterns during early life with critical genera being predictive for assembly patterns, which sheds light on mechanisms of microbial community establishment in the gut of neonatal calves during early life.

4.
J Colloid Interface Sci ; 667: 291-302, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38640649

RESUMEN

Single atom metal-nitrogen-carbon materials have emerged as remarkably potent catalysts, demonstrating unprecedented potential for the photo-driven reduction of CO2. Herein, a unique Cu@g-C3N5 catalyst obtained by cooperation of single atom Cu and nitrogen-rich g-C3N5 is proposed. The particular CuN diatomic active sites (DAS) in Cu@g-C3N5 contribute to the formation of highly stable CuOCN adsorption, a key configuration for CO2 activation and CC coupling. The synergistic diatomic active sites interaction is found responsible for the efficient photoreduction of CO2 to C2H4 which has been demonstrated in our Gibbs free energy calculation and COHP analysis. The CO2 activation mechanism was studied, the charge density difference and DOS analysis show that the low oxidation state Cu atom significantly affects the electronic structure of g-C3N5 and then enhance the catalytic activity of CO2 hydrogenation.

5.
Appl Opt ; 63(9): 2132-2139, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38568564

RESUMEN

A terahertz (THz) L i N b O 3-polymer hybrid metamaterial (LPHM) consisting of three-layer Au patterns and two medium interval layers is demonstrated, and the bulk refractive index (RI) sensing performance is also studied. The parameter optimizations and sensing performances of the LPHM are simulated by the finite-element method (FEM). The results show that the reflection or absorption spectrum of the LPHM has four peaks in the 1-10 THz band, and the peaks move toward the lower frequency when the period (P) of the LPHM or the side length (a) of the notched square frame increases but shift to the higher frequency when w 1 or w 2 increases. Moreover, the LPHM has a wide angular stability and good structural stability. The sensing performance shows that the LPHM can achieve an RI sensitivity of 11.5 µm/RIU with a detection limit (DL) of 2.9×10-4 R I U. The LPHM has potential applications in pharmacological biodevices, THz immunosensing, modern medical and clinical practices, and detection of thin films and biochemical substances, and it can be expected to realize multiphysical parameter measurements.

6.
Nat Commun ; 15(1): 2894, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570494

RESUMEN

Steroidal glycoalkaloids (SGAs) are major plant defense metabolites against pests, while they are considered poisonous in food. The genetic basis that guides negative selection of SGAs production during tomato domestication remains poorly understood. Here, we identify a distal enhancer, GAME Enhancer 1 (GE1), as the key regulator of SGAs metabolism in tomato. GE1 recruits MYC2-GAME9 transcriptional complex to regulate the expression of GAME cluster genes via the formation of chromatin loops located in the neighboring DNA region. A naturally occurring GE176 allelic variant is found to be more active in stimulating GAME expression. We show that the weaker GE1 allele has been the main driver for selecting reduced SGAs levels during tomato domestication. Unravelling the "TFs-Enhancer-Promoter" regulatory mechanism operating in SGAs metabolism opens unprecedented prospects for SGAs manipulation in Solanaceae via precision breeding strategies.


Asunto(s)
Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genética , Domesticación , Fitomejoramiento , Esteroides
8.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1089-1101, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658151

RESUMEN

Vitamin C plays an important role in plant antioxidation, photosynthesis, growth and development, and metabolism. In this study, a gene AhPMM, which is involved in vitamin C synthesis and responds significantly to low temperature, NaCl, polyethylene glycol (PEG) and abscisic acid (ABA) treatments, was cloned from peanut. An AhPMM overexpression vector was constructed, and transferred to a peanut variety Junanxiaohong using the pollen tube injection method. PCR test on the T3 generation transgenic peanut plants showed a transgenics positive rate of 42.3%. HPLC was used to determine the content of reducing vitamin C (AsA) and total vitamin C in the leaves of transgenic plants. The results showed that the content of AsA in some lines increased significantly, up to 1.90 times higher than that of the control, and the total vitamin content increased by up to 1.63 times compared to that of the control. NaCl and ABA tolerance tests were carried out on transgenic seeds. The results showed that the salt tolerance of transgenic seeds was significantly enhanced and the sensitivity to ABA was weakened compared to that of the non-transgenic control. Moreover, the salt tolerance of the transgenic plants was also significantly enhanced compared to that of the non-transgenic control. The above results showed that AhPMM gene not only increased the vitamin C content of peanut, but also increased the salt tolerance of transgenic peanut seeds and plants. This study may provide a genetic source for the molecular breeding of peanut for enhanced salt tolerance.


Asunto(s)
Ácido Abscísico , Arachis , Ácido Ascórbico , Plantas Modificadas Genéticamente , Estrés Fisiológico , Arachis/genética , Arachis/metabolismo , Ácido Ascórbico/biosíntesis , Ácido Ascórbico/metabolismo , Plantas Modificadas Genéticamente/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/biosíntesis , Cloruro de Sodio/farmacología
9.
J Pharm Anal ; 14(3): 348-370, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38618251

RESUMEN

Emerging research suggests a potential association of progression of Alzheimer's disease (AD) with alterations in synaptic currents and mitochondrial dynamics. However, the specific associations between these pathological changes remain unclear. In this study, we utilized Aß42-induced AD rats and primary neural cells as in vivo and in vitro models. The investigations included behavioural tests, brain magnetic resonance imaging (MRI), liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, Nissl staining, thioflavin-S staining, enzyme-linked immunosorbent assay, Golgi-Cox staining, transmission electron microscopy (TEM), immunofluorescence staining, proteomics, adenosine triphosphate (ATP) detection, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) assessment, mitochondrial morphology analysis, electrophysiological studies, Western blotting, and molecular docking. The results revealed changes in synaptic currents, mitophagy, and mitochondrial dynamics in the AD models. Remarkably, intervention with Dengzhan Shengmai (DZSM) capsules emerged as a pivotal element in this investigation. Aß42-induced synaptic dysfunction was significantly mitigated by DZSM intervention, which notably amplified the frequency and amplitude of synaptic transmission. The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions, including the hippocampal CA3, primary cingular cortex, prelimbic system, and dysgranular insular cortex. DZSM intervention led to increased IDE levels, augmented long-term potential (LTP) amplitude, and enhanced dendritic spine density and length. Moreover, DZSM intervention led to favourable changes in mitochondrial parameters, including ROS expression, MMP and ATP contents, and mitochondrial morphology. In conclusion, our findings delved into the realm of altered synaptic currents, mitophagy, and mitochondrial dynamics in AD, concurrently highlighting the therapeutic potential of DZSM intervention.

10.
ACS Appl Nano Mater ; 7(7): 7395-7407, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38633297

RESUMEN

We utilize plasma-enhanced atomic layer deposition to synthesize two-dimensional Nb-doped WS2 and NbxW1-xSy alloys to expand the range of properties and improve the performance of 2D transition metal dichalcogenides for electronics and catalysis. Using a supercycle deposition process, films are prepared with compositions spanning the range from WS2 to NbS3. While the W-rich films form crystalline disulfides, the Nb-rich films form amorphous trisulfides. Through tuning the composition of the films, the electrical resistivity is reduced by 4 orders of magnitude compared to pure ALD-grown WS2. To produce Nb-doped WS2 films, we developed a separate ABC-type supercycle process in which a W precursor pulse precedes the Nb precursor pulse, thereby reducing the minimum Nb content of the film by a factor of 3 while maintaining a uniform distribution of the Nb dopant. Initial results are presented on the electrical and electrocatalytic performances of the films. Promisingly, the NbxW1-xSy films of 10 nm thickness and composition x ≈ 0.08 are p-type semiconductors and have a low contact resistivity of (8 ± 1) × 102 Ω cm to Pd/Au contacts, demonstrating their potential use in contact engineering of 2D TMD transistors.

11.
J Hazard Mater ; 470: 134154, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581871

RESUMEN

In this work, a multiplexed colorimetric strategy was initiated for simultaneous and fast visualization of dyes using low-cost and easy-to-prepare indicator papers as sorbents. Response surface methodology (RSM) was employed to model statistically and optimize the process variables for dyes extraction and colorimetric assays. Multiplexed colorimetry was realized by virtue of synchronous color alignments from different dimensions of multiple dyes co-stained colorimetric cards under RSM-optimized conditions, and smartphone-based image analysis was subsequently performed from different modes to double-check the credibility of colorimetric assays. As concept-to-proof trials, simultaneous visualization of dyes in both beverages and simulated dye effluents was experimentally proved with results highly matched to HPLC or spiked amounts at RSM-predicted staining time as short as 50 s ∼3 min, giving LODs as low as 0.97 ± 0.22/0.18 ± 0.08 µg/mL (tartrazine/brilliant blue) for multiplexed colorimetry, which much lower than those obtained by single colorimetry. Since this is the first case to propose such a RSM-guided multiplexed colorimetric concept, it will provide a reference for engineering of other all-in-one devices which can realize synchronous visualization applications within limited experimental steps.


Asunto(s)
Colorimetría , Colorantes , Teléfono Inteligente , Colorimetría/métodos , Colorantes/química , Colorantes/análisis , Contaminación de Alimentos/análisis , Tartrazina/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Procesamiento de Imagen Asistido por Computador/métodos , Bencenosulfonatos/química , Bebidas/análisis
12.
Acta Pharmacol Sin ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589685

RESUMEN

Excessive acetaminophen (APAP) can induce neutrophil activation and hepatocyte death. Along with hepatocyte dysfunction and death, NETosis (a form of neutrophil-associated inflammation) plays a vital role in the progression of acute liver injury (ALI) induced by APAP overdose. It has been shown that activated neutrophils tend to migrate towards the site of injury and participate in inflammatory processes via formation of neutrophil extracellular traps (NETs). In this study we investigated whether NETs were involved in hepatocyte injury and contributed to APAP-induced ALI progression. ALI mouse model was established by injecting overdose (350 mg/kg) of APAP. After 24 h, blood and livers were harvested for analyses. We showed that excessive APAP induced multiple programmed cell deaths of hepatocytes including pyroptosis, apoptosis and necroptosis, accompanied by significantly increased NETs markers (MPO, citH3) in the liver tissue and serum. Preinjection of DNase1 (10 U, i.p.) for two consecutive days significantly inhibited NETs formation, reduced PANoptosis and consequently alleviated excessive APAP-induced ALI. In order to clarify the communication between hepatocytes and neutrophils, we induced NETs formation in isolated neutrophils, and treated HepaRG cells with NETs. We found that NETs treatment markedly increased the activation of GSDMD, caspase-3 and MLKL, while pre-treatment with DNase1 down-regulated the expression of these proteins. Knockdown of AIM2 (a cytosolic innate immune receptor) abolished NETs-induced PANoptosis in HepaRG cells. Furthermore, excessive APAP-associated ALI was significantly attenuated in AIM2KO mice, and PANoptosis occurred less frequently. Upon restoring AIM2 expression in AIM2KO mice using AAV9 virus, both hepatic injury and PANoptosis was aggravated. In addition, we demonstrated that excessive APAP stimulated mtROS production and mitochondrial DNA (mtDNA) leakage, and mtDNA activated the TLR9 pathway to promote NETs formation. Our results uncover a novel mechanism of NETs and PANoptosis in APAP-associated ALI, which might serve as a therapeutic target.

13.
Chemistry ; : e202401008, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38624085

RESUMEN

Here we report B(C6F5)3/CPA-catalyzed enantioselective aza-Diels-Alder reaction of 3,3-difluoro-2-Aryl-3H-indoles with unactivated dienes to access chiral 10,10-difluoro-tetrahydropyrido[1,2-a]indoles. This protocol allows the formation of pyrazole-based C2-quaternary indolin-3-ones with high enantioselectivities and regioselectivities. Moreover, gram-scale synthesis of the 10,10-difluoro-tetrahydropyrido[1,2-a]indole skeleton was successfully achieved without any reduction in both yield and enantioselectivity.

14.
Heliyon ; 10(5): e27027, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449593

RESUMEN

Hypoxic microenvironment, a hallmark of solid tumors, contributes to chemoresistance, and long noncoding (lnc) RNAs are involved in hypoxia-induced drug resistance. However, the role of lncRNAs in hypoxic tumor chemotherapy resistance remains unclear. Here, we aimed to elucidate the effects of lncRNAs in hypoxia-mediated resistance in colorectal cancer (CRC), as well as the underlying mechanisms. The results indicated that the expression of lncRNA H19 was enhanced in hypoxia- or oxaliplatin-treated CRC cells; moreover, H19 contributed to drug resistance in CRC cells both in vitro and in vivo. Mechanistically, H19 was noted to act as a competitive endogenous RNA of miR-675-3p to regulate epithelial-mesenchymal transition (EMT). Notably, an miR-675-3p mimic could attenuate the effects of H19 deficiency in CRC cells with hypoxia-induced chemoresistance. In conclusion, H19 downregulation may counteract hypoxia-induced chemoresistance by sponging miR-675-3p to regulate EMT; as such, the H19/miR-675-3p axis might be a promising therapeutic target for drug resistance in CRC.

15.
Animals (Basel) ; 14(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473114

RESUMEN

This study aimed to investigate the effect of feeding level on the growth and slaughter performance, and allometric growth of tissues and organs in female growing dairy goats. The trial included 10-20 and 20-30 kg weight stages with 48 female goat kids. The 24 goat kids in each stage were divided into 8 blocks based on weight, with 3 kids per block. Then, three kids from each block were randomly assigned to one of the three treatments, namely ad libitum (AL100), 70% of ad libitum (AL70), or 40% of ad libitum (AL40). The slaughter trial was conducted when the AL100 kids reached the target weight of 20 or 30 kg. The results showed that the ADG and feed conversion rate showed a linear decline as the feed level decreased (p < 0.05). Compared with the AL70 and AL100 groups, the AL40 group exhibited lower shrunk body weight, empty body weight, hot carcass weight, net meat rate, carcass meat rate, and visceral fat weight (p < 0.05) in both stages. Moreover, the AL40 group showed lower weights for skin and mohair, blood, rumen, small intestine, large intestine, mammary gland, and uterus than the AL70 and AL100 groups (p < 0.05) in both stages. However, feeding level did not affect organ indices in the two stages (p > 0.05). The bone, skin and mohair were isometric (b ≈ 1), but the muscle, visceral fat, and most internal organs were positive (b > 1) in both stages. In conclusion, feeding level affects the growth and development of dairy goats, which vary depending on the body weight stage and specific tissues and organs.

16.
Mol Plant ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38486452

RESUMEN

Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation. Through the integration of pangenomes with transcriptomes, methylomes, and chromatin accessibility mapping, we unveil that the evolutionary trajectories of pangenes and duplicated genes are closely linked to local genomic landscapes of regulatory and epigenetic architectures, notably CG methylation in gene-body regions. Further comparative genomic analyses have enabled the identification of 142 202 structural variants across species that intersect with a significant number of genes and contribute substantially to both phenotypic and adaptive divergence. We have experimentally validated a ∼180-bp presence/absence variant affecting the expression of the CUC2 gene, crucial for leaf serration formation. Finally, we developed a user-friendly web-based tool encompassing the multi-omics resources associated with the Populus super-pangenome (http://www.populus-superpangenome.com). Together, the present pioneering super-pangenome resource in forest trees not only aids in the advancement of breeding efforts of this globally important tree genus but also offers valuable insights into potential avenues for comprehending tree biology.

17.
Animals (Basel) ; 14(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38539957

RESUMEN

The purpose of this study was to investigate the effects of feed ingredients with different protein-to-fat ratios on growth, slaughter performance and meat quality of Small-Tail Han lambs. Forty-five Small-Tail Han lambs (♂) (BW = 34.00 ± 2.5 kg, age = 120 ± 9 d) were randomly divided into groups with three different experimental treatments: (1) PF 5, with the ratio of protein to fat (CP:EE) of 50 to 5; (2) PF10, CP: EE = 50:10; (3) PF20, CP: EE = 50:20. Each treatment group had 15 lambs, and each sheep was a repeat. This experiment lasted for 65 days, with feed intake recorded daily, and animals being weighed on days 0, 30, and 65. At the conclusion of the experiment, eight lambs from each group were slaughtered to assess slaughter performance and meat quality. The results showed that the average daily gain (ADG) of the three groups were 315.27, 370.15 and 319.42 g/d, respectively. The PF10 group had the highest ADG (370.15 g) (p < 0.05). Forestomach weights (1216.88 g) of the PF10 group were significantly higher than those of the other groups (p < 0.05). There were no differences (p > 0.05) in fat percentages in various parts of body among treatments. Feed conversion of the PF10 group was higher (p < 0.05) than that of PF 5 and PF 20 groups. Furthermore, the PF10 group had a higher (p > 0.05) carcass weight and slaughter rate and there were few differences between the other groups in terms of dry matter intake, meat quality, organ weight, and fat deposition (p > 0.05). The protein-energy supplement with protein-to-fat ratio, PF10 appeared to be more desirable to promote the growth and development in Small-Tail Han Lambs.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38546988

RESUMEN

In the realm of federated learning (FL), the conventional dual-layered architecture, comprising a central parameter server and peripheral devices, often encounters challenges due to its significant reliance on the central server for communication and security. This dependence becomes particularly problematic in scenarios involving potential malfunctions of devices and servers. While existing device-edge-cloud hierarchical FL (HFL) models alleviate some dependence on central servers and reduce communication overheads, they primarily focus on load balancing within edge computing networks and fall short of achieving complete decentralization and edge-centric model aggregation. Addressing these limitations, we introduce the multicenter HFL (MCHFL) framework. This innovative framework replaces the traditional single central server architecture with a distributed network of robust global aggregation centers located at the edge, inherently enhancing fault tolerance crucial for maintaining operational integrity amidst edge network disruptions. Our comprehensive experiments with the MNIST, FashionMNIST, and CIFAR-10 datasets demonstrate the MCHFL's superior performance. Notably, even under high paralysis ratios of up to 50%, the MCHFL maintains high accuracy levels, with maximum accuracy reductions of only 2.60%, 5.12%, and 16.73% on these datasets, respectively. This performance significantly surpasses the notable accuracy declines observed in traditional single-center models under similar conditions. To the best of our knowledge, the MCHFL is the first edge multicenter FL framework with theoretical underpinnings. Our extensive experimental results across various datasets validate the MCHFL's effectiveness, showcasing its higher accuracy, faster convergence speed, and stronger robustness compared to single-center models, thereby establishing it as a pioneering paradigm in edge multicenter FL.

19.
Int J Numer Method Biomed Eng ; : e3819, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551141

RESUMEN

The study aimed to investigate the mechanical factors for distal stent graft-induced new entry (dSINE) in aortic dissection patients and discussed these factors in conjunction with aortic morphology. Two patients (one dSINE and one non-dSINE), with the same age, gender, and type of implanted stent, were selected, then aortic morphological parameters were calculated. In addition, the stent material parameters used by the patients were also fitted. Simulations were performed based on the patient's aortic model and the stent graft used. The true lumen segment at the distal stent graft was designated as the "dSINE risk zone," and mechanical parameters (maximum principal strain, maximum principal stress) were computed. When approaching the area with higher mechanical parameters in the dSINE risk zone, dSINE patient exhibited higher values and growth rates in mechanical parameters compared to non-dSINE patient. Furthermore, dSINE patient also presented larger aortic taper ratio, stent oversizing ratio, and expansion mismatch ratio of the distal true lumen (EMRDTR). The larger mechanical parameters and growth rates in dSINE patient corresponded to a greater aortic taper ratio, stent oversizing ratio, and EMRDTR. The failure of dSINE prediction by the stent tortuosity index indicated that mechanical parameters were the fundamental reasons for dSINE development.

20.
J Appl Clin Med Phys ; : e14349, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551392

RESUMEN

PURPOSE: Beam delivery latency in respiratory-gated particle therapy systems is a crucial issue to dose delivery accuracy. The aim of this study is to develop a multi-channel signal acquisition platform for investigating gating latencies occurring within RPM respiratory gating system (Varian, USA) and ProBeam proton treatment system (Varian, USA) individually. METHODS: The multi-channel signal acquisition platform consisted of several electronic components, including a string position sensor for target motion detection, a photodiode for proton beam sensing, an interfacing board for accessing the trigger signal between the respiratory gating system and the proton treatment system, a signal acquisition device for sampling and synchronizing signals from the aforementioned components, and a laptop for controlling the signal acquisition device and data storage. RPM system latencies were determined by comparing the expected gating phases extracted from the motion signal with the trigger signal's state turning points. ProBeam system latencies were assessed by comparing the state turning points of the trigger signal with the beam signal. The total beam delivery latencies were calculated as the sum of delays in the respiratory gating system and the cyclotron proton treatment system. During latency measurements, simulated sinusoidal motion were applied at different amplitudes and periods for complete beam delivery latency evaluation under different breathing patterns. Each breathing pattern was repeated 30 times for statistical analysis. RESULTS: The measured gating ON/OFF latencies in the RPM system were found to be 104.20 ± 13.64 ms and 113.60 ± 14.98 ms, respectively. The measured gating ON/OFF delays in the ProBeam system were 108.29 ± 0.85 ms and 1.20 ± 0.04 ms, respectively. The total beam ON/OFF latencies were determined to be 212.50 ± 13.64 ms and 114.80 ± 14.98 ms. CONCLUSION: With the developed multi-channel signal acquisition platform, it was able to investigate the gating lags happened in both the respiratory gating system and the proton treatment system. The resolution of the platform is enough to distinguish the delays at the millisecond time level. Both the respiratory gating system and the proton treatment system made contributions to gating latency. Both systems contributed nearly equally to the total beam ON latency, with approximately 100 ms. In contrast, the respiratory gating system was the dominant contributor to the total beam OFF latency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...